
Toward scalable solvers for
generalized n-body problems

Georgia Tech

– Aparna Chandramowlishwaran, Ilya Lashuk, Ryan Riegel,
Aashay Shringarpure; George Biros, Alex Gray, Rich Vuduc

Lawrence Berkeley National Laboratory

– Sam Williams, Lenny Oliker

Los Alamos Computer Science Symposium 2009

1

Key Ideas and Findings

First cross-platform single-node multicore study
of tuning the fast multipole method (FMM)

Explores data structures, SIMD, multithreading,
mixed-precision, and tuning

Show 25x speedups on Intel Nehalem,
9.4x AMD Barcelona, 37.6x Sun Victoria Falls

Surprise? Multicore ~ GPU in performance &
energy efficiency for the FMM

Broader context: Generalized n-body problems,
for particle simulation & statistical data analytics

2

Context:
Mathematical & programming model foundations
for generalized n-body problems (GNP)

3

Context:
Interaction calculations

What do these have in common?

Consider pairs of points – naïvely O(N2)

Force computation

All nearest neighbors

Kernel density estimation

Range count

∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3

∀q ∈ Q : AllNN(q) = argminr∈R d(q, r)

∀q ∈ Q : KDE(q) =
1

|R|
�

r∈R

K(q, r)

∀q ∈ Q : Range(q) =
�

r∈R

I(dist(q, r)) ≤ h)

4

Commonality: Optimal
approximation algorithms

Hierarchical tree-based approximation algorithms
for force computations, e.g., Barnes-Hut or FMM

Force computation∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3

Evaluate interactions
→ Tree traversals

Store aggregate data at
nodes, e.g., bounding box,
mass

5

Programming model?

Force computation∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3

6

Programming model?

Force computation∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3

Φ(Q) ≡ map
q∈Q

�

r∈(Q−{q})

C
r − q

||r − q||3 MapReduce-like

Write in a more suggestible form

7

Programming model:
THOR

Write in a more suggestible form

Idea: Tree-based High-Order Reduce (THOR)

Provide MapReduce-like programming model

Implementations use fast algorithms

Force computation∀q ∈ Q : F (q) =
�

r∈(Q−{q})

C
r − q

||r − q||3

Φ(Q) ≡ map
q∈Q

�

r∈(Q−{q})

C
r − q

||r − q||3 MapReduce-like

R. Vuduc, A. Gray – NSF HECURA

8

Generalized n-body
problems (GNPs)

General “query-reference” form:

Simple form, I = J = 1:

End-user programmer fills in green stuff

∀q ∈ Q : GNP(q) = g(q,
�

r∈R

f(q, r))

∀q1 ∈ Q1, . . . , qI ∈ QI :

GNP(q1, . . . , qI) = g(q1, . . . , qI ,
�

r1∈R1

· · ·
�

rJ∈RJ

f(q1, . . . , qI , r1, . . . , rJ))

R. Vuduc, A. Gray – NSF HECURA

9

Main research questions

[Math/algorithms] Optimal approximation
algorithms with accuracy guarantees?

[Programming models] How to best express such
methods at a “high-level?”

[Implementation] How to translate from high-level
to efficient low-level?

Big data motivates fast (optimal) algorithms

O(N) is good, but constant matters!

Best architectures? Data structures? Numerics?
Tuning?

R. Vuduc, A. Gray – NSF HECURA

10

High-performance multicore FMMs:
Analysis, optimization, and tuning

Algorithmic characteristics

Architectural implications

Observations

A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, A. Shringarpure, G. Biros, R. Vuduc – NSF HECURA; PetaApps

11

High-performance multicore FMMs:
Analysis, optimization, and tuning

Algorithmic characteristics

Architectural implications

Observations

A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, A. Shringarpure, G. Biros, R. Vuduc – NSF HECURA; PetaApps

12

Direct evaluation: O(N2) Barnes-Hut: O(N log N)

Fast Multipole Method (FMM): O(N)

Computing Direct vs. Tree-based Interactions

13

Given:

N target points and N sources

Tree type & max points per leaf, q

Desired accuracy, ε
Build tree

Evaluate potential at all N targets

Upward pass, “interact” node with parent

Downward pass, interact parent with children

Perform U-, V-, W-, and X-list interactions

Fast multipole method

We use kernel-independent FMM (KIFMM) of Ying, Zorin, Biros (2004).

14

Tree construction Recursively divide space until
each box has at most q points.

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

15

Evaluation phase

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Six phases:
(1.) Upward pass
(2–5.) List computations
(6.) Downward pass

Phases vary in:
→ data parallelism
→ intensity (flops : mops)

Given the adaptive tree, FMM evaluation performs a
series of tree traversals, doing some work at each
node, B.

16

Evaluation phase

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Given the adaptive tree, FMM evaluation performs a
series of tree traversals, doing some work at each
node, B.

Six phases:
(1.) Upward pass
(2–5.) List computations
(6.) Downward pass

Phases vary in:
→ data parallelism
→ intensity (flops : mops)

17

U-List
UL(B: leaf) :- neighbors (B)

UL(B: non-leaf) :- empty

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Direct B⊗U:
→ O(q2) flops : O(q) mops

18

V-List VL(B) :- child (neigh (par (B))) - adj(B)

BV

V

V V V V

V V

V V

V V

V V

V V

X

X

W W W W

W

U
U

U U

U

U
U

In 3D, FFTs + pointwise
multiplication:
→ Easily vectorized
→ Low intensity vs. U-list

19

W-list
WL(B: leaf) :- desc [par (neigh (B)) ∩ adj (B)] - adj (B)

WL(B: non-leaf) :- empty

B

W W W W

W X

X

V

V

V V V V

V V

V V

V V

V V

V V

U
U

U U

U

U
U

Moderate intensity

20

X-list XL(B) :- {A : B ∈ WL(A)}

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Moderate intensity

21

Essence of the
computation

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Parallelism exists:
(1) among phases, with
some dependencies;
(2) within each phase;
(3) per-box.

Do not currently exploit (1).

22

Essence of the
computation

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Large q implies
→ large U-list cost, O(q2)
→ cheaper V, W, X costs
(shallower tree)

Algorithmic tuning
parameter, q, has a global
impact on cost.

23

Essence of the
computation

KIFMM (our variant)
requires kernel evaluations
with expensive flops

For instance, square-root and divide are
expensive, sometimes not pipelined.

K(r) =
C√
r

24

High-performance multicore FMMs:
Analysis, optimization, and tuning

Algorithmic characteristics

Architectural implications

Observations

A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, A. Shringarpure, G. Biros, R. Vuduc – NSF HECURA; PetaApps

25

(2-socket) x (8-core / socket)

(2-socket) x (4-core / socket)

(2-socket) x (4-core / socket)

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Hardware thread and core configurations

How do they differ? What implications for FMM?
26

2 x 8 x 8-thr/core → 128 threads

2 x 4 x 1-thr/core → 8 threads

2-sockets x 4-cores/socket x 2-thr/core → 16 threads

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Hardware thread and core configurations

FMM has fine-grained thread-level parallelism, assuming sufficient functional units.
27

1.166 GHz cores, in-order, shallow pipeline.

Fast 2.3 GHz cores, out-of-order, deep pipelines.

Fast 2.66 GHz cores, out-of-order, deep pipelines.

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Single core configuration

28

No SIMD → 18.66 Gflop/s in single & double

SIMD → 73.6 (double), 146.2 (single) Gflop/s

SIMD → 85.5 (double), 170.6 (single) Gflop/s

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

SIMD

FMM can use SIMD well, so expect good performance on x86.
29

2.26 Gflop/s

0.897 (double), 73.6 (single) Gflop/s

Reciprocal square-root:
0.853 (double), 42.66 (single) Gflop/s

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Floating-point limitations

However, x86 has fast approximate single-precision rsqrt, exploitable in double.
30

4 MB L2
64.0 GB/s bandwidth

Smaller (2 MB) L3 cache
Lower (21.33 GB/s) bandwidth

Large (8 MB) L3 cache
High (51.2 GB/s) bandwidth

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Memory systems

FMM has a mix of memory behaviors, so memory system impact will vary.
31

610 W

350 W

375 W

Sun T5140 “Victoria Falls”

AMD Opteron 2356 “Barcelona”

Intel X5550 “Nehalem”

Max System Power

32

High-performance multicore FMMs:
Analysis, optimization, and tuning

Algorithmic characteristics

Architectural implications

Observations

33

Single-core, manually coded & tuned

Low-level: SIMD vectorization (x86)

Numerical: rsqrtps + Newton-Raphson (x86)

Data: Structure reorg. (transpose or “SOA”)

Traffic: Matrix-free via interprocedural loop fusion

FFTW plan optimization

OpenMP parallelization

Algorithmic tuning of max particles per box, q

Optimizations

34

-100%

0%

100%

200%

300%

400%

500%

600%

T
re

e

U
p

U
 l
is

t

V
 l
is

t

W
 l
is

t

X
 l
is

t

D
o

w
n

sp
e
e
d

u
p

Nehalem

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)

+Matrix-Free

 Computation

+Structure of Arrays +Newton-Raphson

 Approximation

+SIMDization +FFTW

Reference: kifmm3d [Ying, Langston, Zorin, Biros]
35

+Matrix-Free

 Computation

+Structure of Arrays +Newton-Raphson

 Approximation

+SIMDization +FFTW

-100%

0%

100%

200%

300%

400%

500%

600%

T
re

e

U
p

U
 l
is

t

V
 l
is

t

W
 l
is

t

X
 l
is

t

D
o

w
n

sp
e
e
d

u
p

Nehalem

SIMD: ~ 1.2 – 1.8x

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)

36

+Matrix-Free

 Computation

+Structure of Arrays +Newton-Raphson

 Approximation

+SIMDization +FFTW

-100%

0%

100%

200%

300%

400%

500%

600%

T
re

e

U
p

U
 l
is

t

V
 l
is

t

W
 l
is

t

X
 l
is

t

D
o

w
n

sp
e
e
d

u
p

Nehalem

Cumulatively, ~ 3x from SIMD+“smarter numerics”

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)

37

+Matrix-Free

 Computation

+Structure of Arrays +Newton-Raphson

 Approximation

+SIMDization +FFTW

-100%

0%

100%

200%

300%

400%

500%

600%

T
re

e

U
p

U
 l
is

t

V
 l
is

t

W
 l
is

t

X
 l
is

t

D
o

w
n

sp
e
e
d

u
p

Nehalem

Better memory performance + SIMDization, at small cost (“Tree”).

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)

38

+Matrix-Free

 Computation

+Structure of Arrays +Newton-Raphson

 Approximation

+SIMDization +FFTW

-100%

0%

100%

200%

300%

400%

500%

600%

T
re

e

U
p

U
 l
is

t

V
 l
is

t

W
 l
is

t

X
 l
is

t

D
o

w
n

sp
e
e
d

u
p

Nehalem

SOA+Matrix-free (memory system optimizations) ⇒ > 2x

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)

39

+Matrix-Free

 Computation

+Structure of Arrays +Newton-Raphson

 Approximation

+SIMDization +FFTW

-100%

0%

100%

200%

300%

400%

500%

600%

T
re

e

U
p

U
 l
is

t

V
 l
is

t

W
 l
is

t

X
 l
is

t

D
o

w
n

sp
e
e
d

u
p

Nehalem

“Trick” to improve reduce cost of FFTW plan construction

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)

40

Nehalem

-100%

0%

100%

200%

300%

400%

500%

600%

T
r
e
e

U
p

U
 l

is
t

V
 l

is
t

W
 l
is

t

X
 l

is
t

D
o

w
n

s
p

e
e
d

u
p

Barcelona

-50%

0%

50%

100%

150%

200%

250%

300%

T
r
e
e

U
p

U
 l

is
t

V
 l

is
t

W
 l
is

t

X
 l

is
t

D
o

w
n

s
p

e
e
d

u
p

Victoria Falls

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

T
r
e
e

U
p

U
 l

is
t

V
 l

is
t

W
 l
is

t

X
 l

is
t

D
o

w
n

s
p

e
e
d

u
p

+Matrix-Free

 Computation

+Structure of Arrays +Newton-Raphson

 Approximation

+SIMDization +FFTW

Less impact on Barcelona (why?) and Victoria Falls.

~ 4.5x ~ 2.2x ~ 1.4x

Single-core Optimizations
Ns = Nt = 4M, Double-Precision, Non-uniform (ellipsoidal)

41

Algorithmic Tuning of q = Max pts / box
Nehalem

Tree shape and relative component costs vary as q varies.

168

0

100

200

300

400

500

600

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Force Evaluation Only

Reference Serial

42

Algorithmic Tuning of q = Max pts / box
Nehalem

Shape of curve changes as we introduce optimizations.

168

0

100

200

300

400

500

600

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Force Evaluation Only

Reference Serial

Optimized Serial

43

Algorithmic Tuning of q = Max pts / box
Nehalem

Shape of curve changes as we introduce optimizations.

168

10.4
0

100

200

300

400

500

600

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Force Evaluation Only

Reference Serial

Optimized Serial

Optimized Parallel

44

Algorithmic Tuning of q = Max pts / box
Nehalem

168

10.4
0

100

200

300

400

500

600

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Force Evaluation Only

Reference Serial

Optimized Serial

Optimized Parallel

Why? Consider phase costs for the “Optimized Parallel” implementation.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Breakdown by List

U list

45

168

10.4
0

100

200

300

400

500

600

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Force Evaluation Only

Reference Serial

Optimized Serial

Optimized Parallel

Recall: Cost(U-list) ~ O(q2) per box

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Breakdown by List

U list

Algorithmic Tuning of q = Max pts / box
Nehalem

46

A more shallow tree reduces cost of V-list phase.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Breakdown by List

U list

V list

BV

V

V V V V

V V

V V

V V

V V

V V

X

X

W W W W

W

U
U

U U

U

U
U

Algorithmic Tuning of q = Max pts / box
Nehalem

47

Computational intensity of W, X more like U than V.

BV

V

V V V V

V V

V V

V V

V V

V V

X

X

W W W W

W

U
U

U U

U

U
U

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Breakdown by List

U list

V list

W list

X list

Algorithmic Tuning of q = Max pts / box
Nehalem

48

Optimal q will vary as the point distribution varies.

BV

V

V V V V

V V

V V

V V

V V

V V

X

X

W W W W

W

U
U

U U

U

U
U

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

50 100 250 500 750

S
e
co

n
d

s

Maximum Particles per Box

Breakdown by List

Up
U list
V list
W list
X list
Down

Algorithmic Tuning of q = Max pts / box
Nehalem

49

Multicore Scalability over Optimized Baseline
Ellipsoidal Distribution

Need to improve tree construction. Little benefit from SMT.

Barcelona

0

30

60

90

120

150

180

1 2 4 8

Threads

S
e
c
o
n
d
s

Nehalem

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16

Threads

S
e
c
o
n
d
s

Victoria Falls

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

1 2 4 8

1
6

3
2

6
4

1
2

8

Threads

S
e
c
o

n
d

s

New tree constructed for every force evaluation asymptotic limit (force evaluation time only)

~ 6.3x ~ 4.3x ~ 24x

50

Efficiency, via Parallel Cost – p⋅Tp

Uniform Distribution

Nehalem

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Threads

T
h
r
e
a
d
-
S
e
c
o
n
d
s

Upward V-list U-list Downward

Flat horizontal line = perfect scaling
51

Efficiency, via Parallel Cost – p⋅Tp

Uniform Distribution

Nehalem

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Threads

T
h
r
e
a
d
-
S
e
c
o
n
d
s

Upward V-list U-list Downward

Flat horizontal line = perfect scaling

Nehalem

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Threads

T
h
r
e
a
d
-
S
e
c
o
n
d
s Hypothesis:

Contention.

Idea:
Could overlap
U & V lists

52

GPU comparison:
NVIDIA T10P

Our prior work on MPI+CUDA
Lashuk, et al., SC’09

System: NCSA Lincoln Cluster

Dual-socket Xeon

1 node, 1 MPI task per socket & GPU
(tasks mostly idle)

1- and 2-GPU configs

Single-precision only for now

12x compute + 5x bandwidth

53

5
4
.9

2
8
.7

3
.0

3
2
.5

6
0
.3

3
2
.2

1
9
.8

1
.5

2
1
.5

4
2
.6

0.01

0

1

10

100

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

Uniform
Distribution

Elliptical
Distribution

P
e
rf

o
rm

a
n

ce
 R

e
la

ti
v
e
 t

o

O
u

t-
o

f-
th

e
-b

o
x
 N

e
h

a
le

m

Single Precision

Cross-Platform Performance Comparison (Summary)

Reference +Optimized +OpenMP +Tree Construction

 Amortized

Energy assuming CPU

consumes no power

Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.
54

5
4
.9

2
8
.7

3
.0

3
2
.5

6
0
.3

3
2
.2

1
9
.8

1
.5

2
1
.5

4
2
.6

0.01

0

1

10

100

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

Uniform
Distribution

Elliptical
Distribution

P
e
rf

o
rm

a
n

ce
 R

e
la

ti
v
e
 t

o

O
u

t-
o

f-
th

e
-b

o
x
 N

e
h

a
le

m

Single Precision

Cross-Platform Performance Comparison (Summary)

Reference +Optimized +OpenMP +Tree Construction

 Amortized

Energy assuming CPU

consumes no power

Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.

Nehalem =
 1.7x 1-GPU
 0.9x 2-GPU

55

5
4
.9

2
8
.7

3
.0

3
2
.5

6
0
.3

3
2
.2

1
9
.8

1
.5

2
1
.5

4
2
.6

0.01

0

1

10

100

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

Uniform
Distribution

Elliptical
Distribution

P
e
rf

o
rm

a
n

ce
 R

e
la

ti
v
e
 t

o

O
u

t-
o

f-
th

e
-b

o
x
 N

e
h

a
le

m

Single Precision

Cross-Platform Performance Comparison (Summary)

Reference +Optimized +OpenMP +Tree Construction

 Amortized

Energy assuming CPU

consumes no power

Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.

Nehalem =
 1.5x 1-GPU
 0.75x 2-GPU

56

Cross-Platform Energy-Efficiency Comparison
(Watt-Hours) / (Nehalem+OpenMP Watt-Hours)

Reference +Optimized +OpenMP +Tree Construction

 Amortized

Energy assuming CPU

consumes no power

Nehalem has same or better power efficiency than either GPU setup.

3
.1

1
.7

0
.1

1
.3

 1
.7

3
.7

2
.4

0
.1

1
.8

 2
.5

0.01

0

1

10

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

Uniform
Distribution

Elliptical
Distribution

P
o

w
e
r

E
ff

ic
ie

n
cy

 R
e
la

ti
v
e

to
 N

e
h

a
le

m
 w

/
O

p
e
n

M
P

Single Precision

E
n

e
rg

y-
E
ff

ic
ie

n
cy

 R
e
la

ti
ve

to
 N

e
h

a
le

m
 w

/
 O

p
e
n

M
P

57

Summary and Status

First extensive multicore platform study for FMM

Show 25x Nehalem, 9.4x Barcelona, 37.6x VF from
algorithmic, data, and numerical tuning

Multicore CPU ~= GPU in power-performance

Short-term:

Perform more detailed modeling → autotuning

Build integrated MPI+CPU+GPU implementation

Parallel tree construction

Long-term: Generalize infrastructure and merge with
on-going THOR effort for data analysis

58

